Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR.

نویسندگان

  • Sumarin Soonsanga
  • Mayuree Fuangthong
  • John D Helmann
چکیده

Bacillus subtilis OhrR is the prototype for the one-Cys family of organic peroxide-sensing regulatory proteins. Mutational analyses indicate that the high sensitivity of the active site cysteine (C15) to peroxidation requires three Tyr residues. Y29 and Y40 from the opposing subunit of the functional dimer hydrogen bond with the reactive Cys thiolate, and substitutions at these positions reduce or eliminate the ability of OhrR to respond to organic peroxides. Y19 is also critical for peroxide sensing, and the Ala substitution mutant (OhrR Y19A) is less susceptible to oxidation at the active site C15 in vivo. The Y19A protein also displays decreased sensitivity to peroxide-mediated oxidation in vitro. Y19 is in van der Waals contact with two residues critical for protein function, F16 and R23. The latter residue makes critical contact with the DNA backbone in the OhrR-operator complex. These results indicate that the high sensitivity of the OhrR C15 residue to oxidation requires interactions with the opposed Tyr residues. Oxidative modification of C15 likely disrupts the C15-Y29'-Y40' hydrogen bond network and thereby initiates conformational changes that reduce the ability of OhrR to bind to its operator site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Organic Hydroperoxide Response of Chromobacterium violaceum Reveals That OhrR Is a Cys-Based Redox Sensor Regulated by Thioredoxin

Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it display...

متن کامل

OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.

Bacillus subtilis displays a complex adaptive response to the presence of reactive oxygen species. To date, most proteins that protect against reactive oxygen species are members of the peroxide-inducible PerR and sigma(B) regulons. We investigated the function of two B. subtilis homologs of the Xanthomonas campestris organic hydroperoxide resistance (ohr) gene. Mutational analyses indicate tha...

متن کامل

Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress.

Xanthomonas campestris pv. phaseoli OhrR belongs to a major family of multiple-cysteine-containing bacterial organic hydroperoxide sensors and transcription repressors. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that changing any cysteine residue to serine did not alter the ability of OhrR to bind to the P1 ohrR-ohr promoter but drastically affected the organi...

متن کامل

Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro

Bacillus subtilis OhrR is a dimeric repressor that senses organic peroxides and regulates the expression of the OhrA peroxiredoxin. Derepression results from oxidation of an active site cysteine which ultimately results in formation of a mixed disulfide with a low molecular weight thiol, a cyclic sulfenamide, or overoxidation to the sulfinic or sulfonic acids. We expressed a single-chain OhrR (...

متن کامل

Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor.

Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 19  شماره 

صفحات  -

تاریخ انتشار 2007